What is this graph called?

			9				
			${ }^{6}$				
			4				
			,			\square	
		-	2		,	-	
							-

Does this Graph open Up or Down?

Does this Graph have a Max or Min Value? If so, at which point is it located?

What are the Graph's Zeros? Hint: These are the x-intercepts!

What's the Graph's Y-intercept?

Write the following using Interval Notation:

Write the following using Interval Notation: (That's when you use the open/closed Parenthesis)

$$
x>6
$$

Write the following using Interval Notation:

$$
x \leq 6
$$

Write the following using Interval Notation: (That's when you use the open/closed Parenthesis)

What's the Graph's Domain?

(Remember: The Domain is all of the x-values!)

What's the Graph's Range?

(Remember: The Range is all of the y-values!)

What's the interval of Increase?

(This must be written in Interval Notation, remember to only use the x-values!)

What's the interval of Decrease?

(This must be written in Interval Notation, remember to only use the x-values!)

Determine if the table is quadratic or linear using the first and second differences.

Determine if the table is quadratic or linear using the first and second differences.

\boldsymbol{x}	\boldsymbol{y}		
		First Differences	
0	0		Second Differences
1	-1		
2	2		
3	9		
4	20		

Write the Following in Standard Form:

$$
f(x)=2(6 x-3)+3 x^{2}
$$

What are the values of a, b, and c in this Function?

$$
f(x)=3 x^{2}+12 x-3
$$

Find the y-intercept of this function

$$
f(x)=3 x^{2}+12 x-3
$$

Will this function open up or down?

(Hint: It's based off the value of a)

$$
f(x)=3 x^{2}+12 x-3
$$

Determine the Zeroes of the function in factored form:

$$
f(x)=(x-12)(x-2)
$$

Factor

(Hint: Use the GCF!)

$$
f(x)=2 x y+12 x^{2} y^{4}-36 x^{24} y^{2}
$$

Multiply:

$$
f(x)=(x-3)(2 x+3)
$$

